Tag Archives: dp15

What is the Meaning of Signal Output in mV/V?

Validyne variable reluctance sensors such as the DP15 Pressure Sensor, DP103 Low Pressure Sensor, DP360 High Pressure Sensor, etc all have signal output(s) specified in ‘millivolts per volt’ or mV/V. What does this mean and how can you use this to determine the best electronics to use with these sensors.

A variable reluctance pressure sensor is a passive device – it will not produce a signal unless it receives an external power called excitation. Pressure sensors such as model DP15 Pressure Sensor require a special excitation: an AC voltage of 5 Vrms at a frequency of 3 or 5 Khz. Variable reluctance pressure sensors cannot be powered with DC voltages – a variable reluctance pressure sensor is an inductive device and requires AC excitation.

When differential pressure is applied to the pressure sensor the sensing diaphragm causes the inductance in the sensor coils to change. This causes a small AC signal to be developed that is proportional to the applied pressure. The amount of signal developed is expressed as a ratio of the excitation voltage. So ‘millivolts per volt’ is the amount of signal a pressure sensor will develop when full scale pressure is applied.

Signal Output

Validyne pressure sensors have a minimum signal of 20 mV/V, or at least 20 millivolts for each volt of applied excitation at full scale pressure. If the applied excitation is 5 Vrms @ 3 Khz, then the expected output of a sensor at its full scale pressure is 100 mVrms @ 3 Khz. The output of the pressure sensor may be much greater, however – as high as 35 mV/V – and in such a case the signal level would be 175 mVrms.

Carrier demodulator electronics rectify and amplify this small AC signal to provide a standard DC output signal of +/-5 or +/-10 Vdc. Note that the gain of a Validyne carrier demodulator will always be higher than the minimum sensor output at full scale. This allows the user to calibrate for a full scale DC output at the next lower diaphragm range using the span adjustment.

Note also that DC transducers like the P55 General Purpose Pressure Transducer, P895 Test and Measurement Pressure Transducer, P365 High Line Pressure Transducer, etc already have the carrier demodulator electronics integral to the pressure transducer enclosure and are calibrated at the factory for the full scale pressure specified on the order.

Selecting Accessories for the DP15 Variable Reluctance Pressure Sensor

Introduction:

The Validyne DP15 variable reluctance pressure sensor is distinguished by its ability to be re-ranged for different full scale pressure measurements. The sensor can be disassembled, a new sensing diaphragm installed and the unit re-calibrated to the new full scale pressure. Some 23 different full scale pressure diaphragms are available and this application note will describe how to select and order the parts needed to re-range the sensor and interface the signal to a PC.

Accessory Sensor Parts:

A typical DP15 is shown below, with the replaceable external parts identified:

dp15parts variable reluctance pressure sensor

 

 

 

 

To disassemble a DP15 a torque wrench, T27 Torx socket and a vise are needed. These items are available from Validyne and are shown below:

torquewrench variable reluctance pressure sensor

 

 

 

 

 

The sensor can be disassembled by removing the two top screws holding the connector and then the four 10-32 Torx T27 body bolts. When disassembled, the sensor body pieces separate and the sensing diaphragm and o-rings are removed. These parts are shown below:

boltsorings variable reluctance pressure sensor

 

 

 

 

 

It is good practice to replace the body bolts and o-rings when changing the range of the DP15. Various o-ring compounds are available (see ordering chart).

The sensing diaphragm may now be replaced with one of a different range. A typical sensing diaphragm is shown below:

diaph-2 variable reluctance pressure sensor

 

 

 

To re-range a DP15 sensor the full scale pressure must be known and the correct diaphragm part number ordered. The part number for a DP15 diaphragm starts with 3- and is followed by a two-digit range code. The diaphragm in the photo above is p/n 3-22 and has a full scale range of 5.5 In H2O. The other available range codes for the DP15 sensing diaphragm are shown in the chart below with their full scale pressures expressed in various engineering units.

P55Ranges variable reluctance pressure sensor

 

 

 

 

 

 

 

 

Re-assembly is simply the reverse of dis-assembly, taking care that the torque on the body bolts is 125 In-Lb. The vise is used to stabilize the sensor body during assembly and to allow the torque to be correctly transmitted to the body bolts.

Also be sure that the bleed screws are tightly seated – these use a 5/64” hex wrench, Validyne p/n K950-0781.

Calibration Accessories:

The next step is to calibrate the DP15 against a pressure standard. Validyne can supply model T140K calibrator kit that includes a pressure pump and reference standard – an example is shown below.  

T140K variable reluctance pressure sensor

 

 

 

 

 

 

The T140K calibrator kit is available in six different versions covering the available DP15 full scale pressure ranges. To calibrate the DP15 connect it to your carrier demodulator and have a way to observe the output signal of the demodulator. In the example below a CD15 basic carrier demodulator is used with a DP15 and T140K:

caldiagram variable reluctance pressure sensor

 

 

 

 

The Zero and Span adjustments on the CD15 are set during the calibration process so that the analog output is 0 to +/-10 Vdc.

PC Interface Accessories:

The DP15 is typically used in a laboratory where pressure measurement requirements often change. Other sensors may be required to make measurements and the mix and combination of these sensors may also vary. Validyne makes several PC-based data acquisition products that accept any combination or mix of sensor types including thermocouples, strain gages, LVDTs, resistances, RTDs, potentiometers, DC volts and variable reluctance pressure transducers like the DP15.

The DP15 and other sensors can be connected to a PC using the Validyne UPC/USB series of products:

UPC-USB variable reluctance pressure sensor

 

 

 

 

The UPC2100 (left) is a PCI plug-in card for desktop PCs and the USB2250 (right) is a self-contained box that connects to the USB port on a laptop PC.

Both interface devices accept any combination of sensor inputs in addition to DP15 transducers. These products supply all required sensor excitation, amplification, demodulation and A/D conversion. A terminal block is used to receive the field wiring from the sensors and this is connected by a ribbon cable to the UPC2100 or USB2250. The terminal block and ribbon cable is included.

Easy Sense software is also included and this allows the user to configure each of the 16 input channels for different sensor types and to do data logging to a disk file that can be opened by Excel. Both the USB2250 and UPC2100 support 16 bit resolution, six programmable gain ranges and 50,000 sample/second data throughput.

Easy Sense Premium software is available that also includes a graphing function. LabView is supported and programming in Visual Basic.

The cable for connecting the DP15 to the USB2250 or the UPC2100 is Validyne p/n 12457-10.  

UPCCable variable reluctance pressure sensor

 

 

 

Another method of interfacing a single DP15 to a PC is the Validyne CD17. This connects to the transducer using a standard transducer cable (Validyne p/n 11264-10) and comes with a USB cable for connection to a laptop or other PC.  

cd17_5_480 variable reluctance pressure sensor

 

 

 

 

The CD17 produces readings in mV/V and comes with configuration software that will also log data to a text file compatible with Excel. A premium version of the software allows graphing.

Solo61 variable reluctance pressure sensor

 

 

 

 

 

 

 

partslist variable reluctance pressure sensor